top of page

LIST OF PUBLICATIONS

 

  1. Elasticity between manifolds: the weakly-incompatible limit,
    R. Kupferman and C. Maor,
    https://arxiv.org/abs/2402.08041.

     

  2. Stability of isometric immersions of hypersurfaces,
    A. Alpern, R. Kupferman and C. Maor,
    https://arxiv.org/abs/2306.06654.

     

  3. Elliptic pre-complexes, Hodge-like decompositions and overdetermined boundary-Value problems,
    R. Kupferman and R. Leder,
    https://arxiv.org/abs/2304.08977.

     

  4. From Volterra dislocations to strain-gradient plasticity,
    R. Kupferman and C. Maor,
    https://arxiv.org/abs/2302.02368.

     

  5. Double forms: Regular elliptic bilaplacian operators,
    R. Kupferman and R. Leder,
    J. d'Analyse (in press).
    https://arxiv.org/abs/2103.16823.

     

  6. On Saint-Venant compatibility and stress potentials in manifolds with boundary and constant sectional curvature,

    R. Kupferman and R. Leder,
    SIAM J. Math. Anal 54 (2022) 4625-4657.
    https://arxiv.org/abs/2104.05794.

     

  7. Asymptotic rigidity for shells in non-Euclidean elasticity,

    A. Alpern, R. Kupferman and C. Maor,
    J. Func. Anal. 383 (2022) 109575.
    https://arxiv.org/abs/2012.12075.

     

  8. Continuum mechanics of a cellular tissue model,
    R. Kupferman, B. Maman and M. Moshe,
    J. Mech. Phys. Solids 143 (2020) 104085.

     

  9. Homogenization of edge-dislocations as a weak limit of de-Rham currents,
    R. Kupferman and E. Olami,
    In R. Segev and M. Epstein (eds) Geometric Continuum Mechanics.
    Advances in Mechanics and Mathematics, vol 42. Birkhäuser, Cham, 2020.

     

  10. Limits of distributed dislocations in geometric and constitutive paradigms,
    M. Epstein, R. Kupferman and C. Maor,
    In
     R. Segev and M. Epstein (eds) Geometric Continuum Mechanics.
    Advances in Mechanics and Mathematics, vol 42. Birkhäuser, Cham, 2020.
     

  11. A geometric perspective on the Piola identity in Riemannian settings,
    R. Kupferman and A. Shachar,
    J. Geom. Mech. 11 (2019) 59-76.

     

  12. Bending energy of buckled edge dislocations,
    R. Kupferman,
    Phys. Rev. E 96 (2017) 063002. 

     

  13. Variational convergence of discrete geometrically-incompatible elastic models,
    R. Kupferman and C. Maor,
    Calc. Variations and PDEs 57 (2018) 39.

     

  14. Stress theory for classical fields,
    R. Kupferman, E. Olami and R. Segev,
    Math. Mech. Solids 25 (2020) 1472-1503.

     

  15. Reshetnyak rigidity for Riemannian manifolds,
    R. Kupferman, C. Maor and A. Shachar,
    Arch. Rat. Mech. Anal. 231 (2019) 367-408.

     

  16. Continuum dynamics on manifolds: applications to non-Euclidean elasticity,
    R. Kupferman, E. Olami and R. Segev,
    J. Elasticity 128 (2017) 61-84.

     

  17. On strain measures and the geodesic distance to SO(n) in the general linear group,
    R. Kupferman and A. Shachar,
    J. Geom. Mech. 8 (2016) 437-460.

     

  18. Limits of elastic models of converging Riemannian manifolds,
    R. Kupferman and C. Maor,
    Calc. Variations and PDEs 55 (2016) 1-22.

     

  19. Elastic interactions between two-dimensional geometric defects,
    M. Moshe, E. Sharon and R. Kupferman,
    Phys. Rev. E 92 (2015) 062403.

     

  20. Non-metricity in the continuum limit of randomly-distributed point defects,
    R. Kupferman, C. Maor and R. Rosenthal,
    Israel J. Math. 223 (2018) 75–139.

     

  21. Geometry and mechanics of two-dimensional defects in amorphous materials,
    M. Moshe, I. Levin, H. Aharoni, R. Kupferman and E. Sharon,
    Proc. Nat. Acad. Sci. USA 112 (2015) 10873-10878. 

     

  22. Riemannian surfaces with torsion as homogenization limits of locally-Euclidean surfaces with dislocation-type singularities,
    R. Kupferman and C. Maor,
    Proc. Roy. Soc. Edin. 146A (2016) 741-768.

     

  23. The emergence of torsion in the continuum limit of distributed dislocations,
    R. Kupferman and C. Maor,
    J. Geom. Mech. 7 (2015) 361-38.

     

  24. Geometry of thin nematic elastomers,
    H. Aharoni, E. Sharon and R. Kupferman,
    Phys. Rev.. Lett. 113 (2014) 257801

    .

  25. Metric description of defects in amorphous materials,
    R. Kupferman, M. Moshe and J.P. Solomon,
    Arch. Rat. Mech. Anal. 216 (2015) 1009-104.

     

  26. A Riemannian approach to the membrane limit in non-Euclidean elasticity,
    R. Kupferman and C. Maor,
    Comm. Contemp. Math. 16 (2014) 1350052.

     

  27. Pattern selection and multiscale behavior in metrically-discontinuous non-Euclidean plates,
    M. Moshe, E. Sharon and R. Kupferman,
    Nonlinearity 26 (2013) 3247-3258.

     

  28. The metric description of elasticity in residually stressed soft materials,
    E. Efrati, E. Sharon and R. Kupferman,
    Soft Matter 9 (2013) 8187-8197.

     

  29. Emergence of spontaneous twist and curvature in non-Euclidean rods: application to Stork's Bill cells,
    H. Aharoni, Y. Abraham, R. Elbaum, E. Sharon and R. Kupferman,
    Phys. Rev. Lett. 108 (2012) 238106.

     

  30. A Riemannian approach to reduced plate, shell, and rod theories,
    R. Kupferman and J.P. Solomon,
    J. Func. Anal. 266 (2014) 2989-3039.

     

  31. No justified complaints: on fair sharing of multiple resources,
    D. Dolev, D.G. Feitelson, J.Y. Halpern, R. Kupferman and N. Linial,
    Innovations in Theoretical Computer Science 2012.

     

  32. Geometry and mechanics of chiral pod opening,
    S. Armon, E. Efrati, E. Sharon and R. Kupferman,
    Science 333 (2011)  1726-1730.

     

  33. Hyperbolic non-Euclidean elastic strips and  minimal surfaces,
    E. Efrati, E. Sharon and R. Kupferman,
    Phys. Rev. E 83 (2011) 046602.

     

  34. Dimensional reduction of the master equation for stochastic chemical networks: the reduced-multiplane method,
    B. Barzel, O. Biham, R. Kupferman, A. Lipshtat, and A. Zait,
    Phys. Rev. E 82 (2010) 021117.

     

  35. Mean-field variational approximation for continuous-time Bayesian networks,
    I. Cohn, T. El-Hay, N. Friedman and R. Kupferman,
    J. Machine Learning Research 11, (2010) 2745-2783.

     

  36. Continuous-time belief propagation,
    T. El-Hay, I. Cohn, N. Friedman and R. Kupferman,
    27th International Conference on Machine Learning, 2010. 

     

  37. Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space
    R. Kupferman and Y. Shamai,
    Israel J. Math. 190 (2012) 135-156.

     

  38. Mean-square approximation of a non-flat Riemannian manifold by a flat one: two-dimensional case,
    R. Kupferman and Y. Shamai, 
    Preprint.

     

  39. Mean-field variational approximation for continuous-time Bayesian networks,
    I. Cohn, T. El-Hay,  N. Friedman and R. Kupferman,
    Uncertainty in Artificial Intelligence 2009.

     

  40. Non-Euclidean plates and shells, 
    E. Efrati, E. Sharon and R. Kupferman, 
    Preprint.

     

  41. Buckling transition and boundary layer in non-Euclidean plates ,
    E. Efrati, E. Sharon and R. Kupferman,
    Phys. Rev E 80 (2009) 016602.

     

  42. Numerical stability of the method of Brownian configuration fields,
    C. Mangoubi, M.A. Hulsen, and R. Kupferman,
    J. Non-Newton. Fluid Mech. 157 (2009) 188-196.

     

  43. Elastic theory of unconstrained non-Euclidean plates ,
    E. Efrati, E. Sharon, and R. Kupferman,
    J. Mech. Phys. Solids 57 (2009) 762-775.

     

  44. Spatially correlated noise and variance minimization in stochastic simulations,
    R. Kupferman and Y. Shamai,
    J. Non-Newton. Fluid Mech. 157 (2009) 92-100.

     

  45. Gibbs sampling in factorized continuous-time Markov processes,
    T. El-Hay, N. Friedman and R. Kupferman,
    Uncertainty in Artificial Intelligence 2008.

     

  46. Long-time limit for a class of quadratic infinite-dimensional dynamical systems inspired by models of viscoelastic fluids,
    G. Katriel, R. Kupferman, and E.S. Titi,
    J. Diff. Eq. 245 (2008) 2771-2784.

     

  47. Optimal choices of correlation operators in Brownian simulation methods,
    R. Kupferman and Y. Shamai,
    SIAM Multiscale Modeling and Simulation 7 (2008) 321.

     

  48. A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime,
    R. Kupferman, C. Mangoubi, and E.S. Titi, 
    Comm. Math. Sci. 6 (2008) 235-256.

     

  49. Analysis of the multiplane method for efficient simulation of reaction networks,
    B. Barzel, O. Biham, and R. Kupferman,
    Phys. Rev. E 76 (2007) 026703.

     

  50. Analysis of the multiplane method for stochastic simulations of reaction networks with fluctuations,
    B. Barzel, O. Biham, and R. Kupferman,
    SIAM Multiscale Modeling and Simulation 6 (2007) 963-982.

     

  51. Global stability of equilibrium manifolds, and "peaking" behavior in quadratic differential systems related to viscoelastic models,
    R. Fattal, O.H. Hald, G. Katriel, and R. Kupferman,
    J. Non-Newton. Fluid Mech. 144 (2007) 30-41.

     

  52. Dimension reduction in singularly-perturbed continuous-time Bayesian networks,
    N. Friedman and R. Kupferman,
    Uncertainty in Artificial Intelligence 2006.

     

  53. 45. Continuous time Markov networks,
    T. El-Hay, N. Friedman, D. Koller and R. Kupferman,
    Uncertainty in Artificial Intelligence 2006. [EFKK06.pdf]

     

  54. Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems,
    D. Givon, I.G. Kevrekidis and R. Kupferman,
    Comm. Math. Sci. 4 (2006) 707-729.

     

  55. Prediction from partial data, renormalization and averaging,
    A.J. Chorin, O.H. Hald and R. Kupferman,
    J. Sci. Comp. 28 (2006) 245-261.

     

  56. On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation,
    R. Kupferman,
    J. Non-Newton. Fluid Mech. 127 (2005) 169-190.

     

  57. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms,
    M.A. Hulsen, R. Fattal and R. Kupferman,
    J. Non-Newton. Fluid Mech. 127 (2005) 27-39.

     

  58. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation,
    R. Fattal and R. Kupferman,
    J. Non-Newton. Fluid Mech. 126 (2005) 23-37.

     

  59. Constitutive laws for the matrix-logarithm of the conformation tensor,
    R. Fattal and R. Kupferman,
    J. Non-Newton. Fluid Mech. 123 (2004) 281-285.

     

  60. Ito versus Stratonovich white noise limits for systems with inertia and colored multiplicative noise,
    R. Kupferman, G.A. Pavliotis and A.M. Stuart,
    Phys. Rev. E 70 (2004).

     

  61. White noise limits for discrete dynamical systems driven by fast deterministic dynamics,
    D. Givon and R. Kupferman,
    Physica A 335 (2004) 385--412.

     

  62. Fractional kinetics in Kac-Zwanzig heat bath models,
    R. Kupferman,
    J. Stat. Phys. 114 (2004) 291-326.

     

  63. Extracting macroscopic dynamics: model problems & algorithms,
    D. Givon, R. Kupferman and A.M Stuart,
    Nonlinearity 17 (2004) R55-R127.

     

  64. Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism,
    D. Givon, O.H. Hald and R. Kupferman,
    Israel J. Math. 199 (2004) 279-316.

     

  65. Fitting SDE models to nonlinear Kac-Zwanzig heat bath models,
    R. Kupferman and A.M. Stuart,
    Physica D 199 (2004) 279-316.

     

  66. Long term behaviour of large mechanical systems with random initial data [Errata]
    R. Kupferman, A.M. Stuart, J.R. Terry, and P.F. Tupper,
    Stochastics and Dynamics 2 (2002) 533-562.

     

  67. Optimal prediction with memory,
    A.J. Chorin, O.H. Hald and R. Kupferman,
    Physica D 166 (2002) 239-257.

     

  68. Asymptotic and numerical analyses for mechanical models of heat baths,
    O.H. Hald and R. Kupferman,
    J. Stat. Phys. 106 (2002) 1121-1184.

     

  69. A central-difference scheme for a pure stream function formulation of incompressible viscous flow,
    R. Kupferman,
    SIAM J. Sci. Comp. 23 (2001) 1-18.

     

  70. Convergence of optimal prediction for nonlinear Hamiltonian systems,
    O.H. Hald and R. Kupferman,
    SIAM J. Num. Anal. 39 (2001) 983-1000.

     

  71. Optimal Prediction and the Mori-Zwanzig Representation of Irreversible Processes,
    A.J. Chorin, O.H. Hald and R. Kupferman,
    Proc. Nat. Acad. Sci USA 97 (2000) 2968-2973.

     

  72. Optimal Prediction for Hamiltonian Partial Differential Equations,
    A.J. Chorin, R. Kupferman and D. Levy,
    J. Comp. Phys. 162 (2000) 267-297.

     

  73. Emergence of Structure in a Model of Liquid Crystalline Polymers with Elastic Coupling,
    R. Kupferman, M.N. Kawaguchi and M.M. Denn,
    J. Non-Newton. Fluid Mech. 91 (2000) 255-271.

     

  74. On the Prediction of Large-Scale Dynamics using Unresolved Computations,
    A.J. Chorin , A.P. Kast and R. Kupferman,
    AMS Contemporary Mathematics 53 (1999) 53-75.

     

  75. Simulation of the Evolution of Concentrated Shear Layers in a Maxwell Fluid with a Fast High-Resolution Finite-Difference Scheme,
    R. Kupferman and M.M. Denn,
    J. Non-newton. Fluid Mech. 84 (1999) 275-287.

     

  76. Unresolved Computation and Optimal Prediction,
    A.J. Chorin , A.P. Kast and R. Kupferman,
    Comm. Pure Appl. Math. 52 (1999) 1231--1254.

     

  77. Optimal Prediction of Underresolved Dynamics,
    A.J. Chorin , A.P. Kast and R. Kupferman,
    Proc. Nat. Acad. Sci. USA 95 (1998) 4094-4098.

     

  78. Simulation of Viscoelastic Fluids: Couette-Taylor Flow,
    R. Kupferman,
    J. Comp. Phys. 147 (1998) 22-59.

     

  79. 71. A Numerical Study of the Kosterlitz-Thouless Transition in a Two-Dimensional Coulomb or Vortex Gas,
    R. Kupferman and A.J. Chorin,
    SIAM J. Appl. Math. 59 (1999) 1843--1866.

     

  80. A Numerical Study of the Axisymmetric Couette-Taylor Problem Using a Fast High-Resolution Second-Order Central Scheme,
    R. Kupferman,
    SIAM J. Sci. Comp. 20 (1998) 858--877.

     

  81. A Fast High-Resolution Second-Order Central Scheme for Incompressible Flow,
    R. Kupferman and E. Tadmor,
    Proc. Nat. Acad. Sci. USA 94 (1997) 4848-4852.

     

  82. Spirals in Excitable Media: II. The Meandering Transition in the Free Boundary Limit,
    D.A. Kessler and R. Kupferman,
    Physica D 105 (1997) 207-225.

     

  83. Intracellular Calcium Waves: Analytical Estimates of Wave Characteristics,
    R. Kupferman, P.P. Mitra, P.C. Hohenberg and S.S.-H. Wang,
    Biophys. J. 72 (1997) 2430-2444.

     

  84. Spirals in Excitable Media: The Free-Boundary Limit with Diffusion,
    D.A. Kessler and R. Kupferman,
    Physica D 97 (1996) 509-516.

     

  85. Concentric Decomposition During Rapid Compact Growth,
    M. Zukerman, R. Kupferman, O. Shochet and E. Ben-Jacob,
    Physica D 90 (1996) 293-305.

     

  86. Tilted arrays of dendrites,
    R. Kupferman and D.A. Kessler,
    Phys. Rev. E 51 (1995) R20-R23.

     

  87. Coexistence of Symmetric and Parity-Broken Dendrites in a Channel,
    R. Kupferman, D.A. Kessler and E. Ben-Jacob,
    Physica A 213 (1995) 451.

     

  88. Numerical Study of Morphology Diagram in the Large Undercooling Limit Using a Phase-Field Model,
    R. Kupferman, O. Shochet and E. Ben-Jacob,
    Phys. Rev. E 50 (1994) 1005-1008.

     

  89. Complexity in Diffusive Patterning,
    R. Kupferman, O. Shochet and E. Ben-Jacob,
    in `` Patterns in Nature: Fascination of their Origin and Simulation '' which is a part of the series ``Facetten'' by the Vieweg-Verlag.

     

  90. Origination of Propagating Normal Domains in Large Composite Superconductors,
    V.S. Kovner, R. Kupferman and R.G. Mints,
    IEEE Trans. Appl. Superconductivity 3 (1993) 289-292. 

     

  91. Initiation of Traveling Normal Domains in Large Composite Superconductors,
    V.S. Kovner, R. Kupferman and R.G. Mints,
    J. Appl. Phys. 73 (1993) 3087-3091.

     

  92. Properties of the Morphologies Envelope in a Diffusion Limited Growth,
    O. Shochet, R. Kupferman and E. Ben-Jacob,
    in Growth Patterns in Physical Sciences and Biology , E. Louis, L. M. Sander, P. Meakin and J. M. Garcia-Ruiz Eds., (Plenum 1993).

     

  93. Phase-Field Model: Boundary Layer, Selected Velocity and Stability Spectrum,
    R. Kupferman, O. Shochet, E. Ben-Jacob and Z. Schuss,
    Phys. Rev. B 46 (1992) 16045-16057.

     

  94. Normal Zone in Large Composite Superconductors,
    R. Kupferman, R.G. Mints and E. Ben-Jacob,
    Cryogenics 32 (1992) 485-489.

     

  95. WKB Study of Fluctuations and Activation in Non-Equilibrium Dissipative Steady States,
    R. Kupferman, M. Kaiser, Z. Schuss and E. Ben-Jacob,
    Phys. Rev. A 45 (1992) 745-756.

     

  96. Propagating Normal Domains in Large Composite Superconductors,
    R. Kupferman, R.G. Mints and E. Ben-Jacob,
    J. Appl. Phys. 70 (1991) 7484-7491.

     

  97. Normal Zone Soliton in Large Composite Superconductors,
    R. Kupferman, R.G. Mints and E. Ben-Jacob,
    Adv. Cryog. Eng. 38B (1991) 509-515.

bottom of page